			House No Change-Over-Tim			me 2 Player 2			Period
٦L			Mouse Generations Data Chart (Tally your results.)			-			Cit in
	Sand Color	Gener -ation	<u>Lived</u> White	Lived Brown	Died White	Diec o o Brown	9		
		1							
		2							
		3							
		4							
		5							

The Mouse Generations:

- __1. Work on this lab with one another person. Keep the cards organized for the next use.
- __2. You need 3 piles: Mouse Cards, Event Cards and Mutation Cards. Mix each pile. You need a sign for the Sand Color and a sign for future piles of Live Mice and Dead Mice.
- ____3. The first environment is **Brown Sand Dunes**. You will use the cards to model what might happen to a group of mice that live in an environment of brown sand dunes.

__Listen for Sand Change!

- ___4. Player 1: Choose 2 Mouse Cards, one from each parent, to represent the hair color traits in the sex cells.
 - a) Gene allele B is dominant for Brown hair color, or Brown mice. BB and Bb produce brown mice.
 - b) Gene allele b is recessive for white hair. "bb" produces white mice.
- __5. Choose an event card.
 - a) A <u>Survival</u> card means the mouse survives (lives).
 - b) A <u>Disease</u> or a <u>Predator All</u> card means the mouse dies.
 - c) A Predator Contast card means the mouse dies if its color contrasts
 - with the sand dunes. (Only brown mice die if sand dunes are white.)
 - d) A Mutant Mouse card? Choose a Mutation Card. Paperclip the Mutation Card to 1 mouse card.
- ____6. Record the fate of the mouse with a tally mark () in the data table. (Everyone tally for everyone at table.)
- ____7. Place the mouse (2 cards) in the correct pile, Live or Dead.
- ___8. Put the <u>Event Card</u> at the bottom of its pack.
- ___9. Player 2 (or the next player): Starts at #4. Take turns. Record all results.

_Listen for Generation Change!

___10. **NEW GENERATION:** Start a new generation if you run out of mouse cards, or if there is an announcement.

- ___11. a) Move your Live Mice Mouse Cards and use them for new mice. Mutations stay with their mouse card.
- ___12. b) Leave the dead mice in the <u>Dead Mice</u> pile <u>untouched</u>.
- ___13. c) You may use Mouse Cards from your original Mouse Card pile.

_Work until you have data for both brown and white sand.

____14. Graph the live populations of each color of mouse.

Mark environmental changes with a vertical line.

_Continue to Page 2.

 $\frac{\text{Record Mutations}}{\text{mice.}} \text{ here that result in live}$

Mouse Name_____Period___ Change-Over-Time Player 2_____

Consider: Natural Selection \rightarrow Change-Over-Time \rightarrow Evolution

____16. A M<u>utation</u> (an unpredictable change in a chromosome or D _ _) sometimes cause a noticeable change that increases or ______ the ability of an organism to sur______. Helpful mutations start with 1 organism and spread slowly by re______. Organisms that have generations of helpful mutations become "Super" organisms". An "Super" example is disease-causing bacteria that are resistant to antibiotics.

- ____17. The increase in survival, reproduction & population is called <u>Natural Selection</u>. When <u>Natural Selection</u> results in trait change(s) in an entire group or species, it is also <u>Change-Over-Time</u> or <u>evolution</u>. Most changes are small and go unnoticed.
- _____18. If a <u>mutation</u> causes a mouse to have white fur with pale brown spots, then that mouse may be able to avoid predators on either white or _______ sand and produce spotted brown offspring. If, as the sand changes colors, the spotted mice are the only survivors, then that would be Change-over-_____ and an example of a species <u>evolving</u>. Enough change becomes a new species, which is a group with similar DNA that produce similar offspring.
- ____19. If the environment changes so much that not enough offspring survive and reproduce, then the species may become e______.
- ____20. If the beach (and its mice) were divided into multiple new beaches, (as the G_______ Islands where Charles Darwin visited and studied) then over time a new species may develop on only one of the new ______.